Empecemos con una pequeña introducción al tema a tratar a continuación.
El hecho de que el Universo esté en expansión constante se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Friedmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang.
El corrimiento al rojo se refiere a que los astrónomos han observado que hay una relación directa entre la distancia a un objeto remoto (como una galaxia) y la velocidad con que está alejándose. En cambio, si esta expansión ha sido continua en toda la edad del Universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big-Bang el modelo dominante en la cosmología actual.
Durante la era más temprana del Big Bang, se cree que el Universo era un caliente y denso plasma (4º estado de la materia). Según avanzó la expansión, la temperatura cayó a ritmo constante hasta el punto en que los átomos se pudieron formar. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía sobrante continuó enfriándose al expandirse el Universo y hoy forma el fondo cósmico de microhondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang.
El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del Universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1% (137 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11.000 millones a 20.000 millones. En el libro de 1977 Los Primeros Tres Minutos del Universo, el premio Nobel Steven Weingber muestra la física que ocurrió justo momentos después del Big Bang. Los descubrimientos adicionales y los refinamientos de las teorías hicieron que lo actualizara y reeditara en 1993.
Sopa Primigenia
Hasta hace poco, la primera centésima de segundo era más bien un misterio, impidiendo los científicos describir exactamente cómo era el Universo. Los nuevos experimentos en el RHIC, en el Brookhaven national laboratory, han proporcionado a los físicos una luz en esta cortina de alta energía, de tal manera que pueden observar directamente los tipos de comportamiento que pueden haber tomado lugar en ese instante.
En estas energías, los quarks que componen los protones y los neutrones no estaban juntos, y una mezcla densa supercaliente de quarks y gluones, con algunos electrones, era todo lo que podía existir en los microsegundos anteriores a que se enfriaran lo suficiente para formar el tipo de partículas de materia que observamos hoy en día.
Protogalaxias
Los rápidos avances acerca de lo que pasó después de la existencia de la materia aportan mucha información sobre la formación de las galaxias. Se cree que las primeras galaxias eran débiles "galaxias enanas" que emitían tanta radiación que separarían los átomos gaseosos de sus electrones. Este gas, a su vez, se estaba calentando y expandiendo, y tenía la posibilidad de obtener la masa necesaria para formar las grandes galaxias que conocemos hoy.
Destino Final
El destino final del Universo tiene diversos modelos que explican lo que sucederá en función de diversos parámetros y observaciones. A continuación se explican los modelos fundamentales más aceptados:
Big Crunch o la Gran Implosión
Es muy posible que el inmenso aro que rodeaba a las galaxias sea una forma de materia que resulta invisible desde la Tierra. Esta materia oscura tal vez constituya el 99% de todo lo que hay en el Universo.
Si el universo es suficientemente denso, es posible que la fuerza gravitatoria de toda esa materia pueda finalmente detener la expansión inicial, de tal manera que el universo volvería a contraerse, las galaxias empezarían a retroceder, y con el tiempo colisionarían entre sí. La temperatura se elevaría, y el Universo se precipitaría hacia un destino catastrófico en el que quedaría reducido nuevamente a un punto.
Algunos físicos han especulado que después se formaría otro Universo, en cuyo caso se repetiría el proceso. A esta teoría se la conoce como la teoría del Universo oscilante.
Hoy en día esta hipótesis parece incorrecta, pues a la luz de los últimos datos experimentales, el Universo se está expandiendo cada vez más rápido.
Big Rip o Gran Desgarramiento
El Gran Desgarramiento o Teoría de la Eterna Expansión, llamado en inglés Big Rip, es una hipótesis cosmológica sobre el destino último del universo. Este posible destino final del universo depende de la cantidad de energía oscura existente en el Universo. Si el Universo contiene suficiente energía oscura, podría acabar en un desgarramiento de toda la materia.
El valor clave es w, la razón entre la presión de la energía oscura y su densidad energética. A w < -1 (esto quiere decir que si la presión de energía oscura AW es inferior a la densidad energética de -1 se produciría un desgarramiento) el universo acabaría por ser desgarrado. Primero, las galaxias se separarían entre sí, luego la gravedad sería demasiado débil para mantener integrada cada galaxia. Los sistemas planetarios perderían su cohesión gravitatoria. En los últimos minutos, se desbaratarán estrellas y planetas, y los átomos serán destruidos.
Los autores de esta hipótesis calculan que el fin del tiempo ocurriría aproximadamente 3,5×1010 años después del Big Bang, es decir, dentro de 2,0×1010 años.
Una modificación de esta teoría, aunque poco aceptada, asegura que el universo continuaría su expansión sin provocar un Big Rip.
Teoría de la no acotabilidad
Todas las teorías acerca del origen del Universo se construyen sobre el concepto de universo acotado como un conjunto, pero esto es incierto pues su dimensión relativa es indeterminada. Por tanto no tiene sentido aplicar las leyes del tiempo a algo no acotado. Ejemplo de esto sería tratar de calcular cuánto tardaría en pararse un objeto móvil en una órbita circular no sujeta a ninguna otra fuerza; la longitud relativa del recorrido del objeto no es acotable y por tanto no tendría sentido medir el tiempo que tardaría en recorrerla. En el plano de la filosofía el ejemplo más cercano sería la cuestión, ¿Qué sentido tiene existir?, dado que el concepto existir de forma relativa no es acotable (cualquier concepción de existencia es una concepción subjetiva), es absurdo tratar de resolver dichas cuestiones pues la relatividad no es aplicable a los absolutos. Se entiende que el Universo siempre ha existido pues el Tiempo absoluto es una consecuencia del Espacio absoluto. La propia ley de la conservación de la energía que constituye el primer principio de la termodinámica afirma que la cantidad total de energía en cualquier sistema aislado sin interacción con ningún otro sistema (El universo) permanece invariable con el tiempo relativo, aunque dicha energía puede transformarse en otra forma de energía.